

The 5G-Powered Transit Companion

Project Overview

The product:

Design an AR Transit Companion app to enhance the post-COVID public transit experience for university students and young professionals using ION trains and subways.

Project duration:

July 2021 - September 2022

Project Overview

The problem:

Transit riders faced confusion and uncertainty during their commutes, especially in the post-COVID context.

The goal:

To enhance the public transit journey using AR and 5G technology by delivering real-time, context-aware information through smart glass.

Project Overview

My role and the team

User Experience Researcher Project Owner User Interface Designer Interaction Designer Front-end Software Developer Backend Developer

Responsibilities:

Led user research from start to finish, including literature review, field studies, data collection and synthesis. Conducted thematic analysis, contributed to ideation, co-created personas and journey maps, and facilitated guerrilla usability testing in collaboration with the design team.

Understanding the user

- User research
- Personas
- User journey maps
- Field Study

User Research: Summary

For this project, I conducted a mix of field observations, survey, and a literature review. We assumed post-COVID commuters were mainly concerned about safety and hygiene. But research showed their top pain points were lack of real-time updates, unclear routes, and crowding.

This shifted our focus to delivering context-aware, real-time transit info to reduce stress.

User Research: Pain Points

AGE 25 - 34 years old

STATUS

Single or Partnered

INCOME

CAD 79,000 - 100,000

LOCATION Kitchener

Working Professional

BIO

Working professional who lives in the Kitchener-Waterloo area and currently either works fully remotely or hybrid (going into the office once or twice weekly via the LRT). Their average commute to work is 20 minutes.

GOALS

- → Commute to (and from) work safely and on time
- → Avoid crowded vehicles/platforms
- → Being happy and relaxed
- → Saving Money

PAINS

- Limited time
- Fear of using public transit
- No work-life balance

GAINS

- Saving time
- Easing stress
- Staying safe

VALUES

- Mental Health
- Relaxation

AGE 15 - 24 years old

STATUS

Single

OCCUPATION

University student

LOCATION Kitchener

Commuting Student

BIO

A university student commuting from Kitchener to the University of Waterloo. Balancing academics, social life, and budgeting for an affordable and efficient commute.

GOALS

- → Balancing social life with school
- → Commute to campus and around Kitchener-Waterloo
- → Saving Money

PAINS

- Balancing school, social life and work
- Stress from long & unpredictable commutes

GAINS

- Saving time
- Staying safe & healthy
- Affordability

VALUES

- Affordability
- Time efficiency
- Convenience

Field Study: Key Observations

- the glass is tinted. - If we duplay comething on one side it'll look backmards on the reverse side. The Arain only stops for less then a minute

- Rlatton massage shews "Get waciunter" momortaily People get on and all is not a lot of time to read window sieplays.

- two drains arrive shout the same time.

-transit mop porter shad 5 min walk uning


```
- Reverse
```


are on their phone Rente look at the does when preparing to eget off.

- thus no allo on trains. Only info available is the route map and rules for riding

- then are formcant faiting seals and side fairy seals. - when it's crowded, people cast wit chaon where they want to sit -

look for wacant seats

glaces insite ille likely art be usur from the outside

Depending on where your sit, it would be ankward boking at displays on the

Field Study (Public Displays and Signage)

Waiting areas

Information/Advertisements

Current display

User Journey Map

Value Proposition Canvas - Transit

Value Proposition Canvas - Rider

Survey

Starting the design

- Paper wireframes
- Digital wireframes
- Usability studies

Paper Wireframes

User goals:

- Arrive at destination (Point A to B) on time

- Keep transportation cost reasonable

- Ensure personal safety throughout the journey

High-Fidelity Prototype: Fullness Concept

High-Fidelity Prototype: Occupancy Concept

Usability Testing

Usability Study: Findings

We evaluated two crowding visualizations—Fullness and Occupancy—to understand how well they support passengers' boarding decisions. Participants rated both visualizations on a 5-point Likert scale and shared qualitative feedback on their experience.

Fullness Concept

- 1
- Fullness was seen as simpler and faster to interpret, with a higher median score for understandability.

- Terms like "crowded" were seen as subjective, making it hard for users to judge the actual space available on the train.
- 3
- The study revealed a trade-off between simplicity (Fullness) and information richness (Occupancy), highlighting opportunities for hybrid or adaptive design solutions.

Occupancy Concept

- 1
 - 64% of participants preferred the Occupancy visualization, citing better spatial awareness and planning ability.

Participants valued the block-based Occupancy view, showing a strong preference for accurate, detailed data to make confident decisions.

Users expressed confusion over certain visual elements, particularly and suggested improvements like differentiating seating from standing space.

Going forward

- Takeaways
- Next steps

Takeaways

Impact:

Crowding visualizations empower riders to make safer, more informed decisions by anticipating crowded conditions—supporting post-pandemic confidence in public transit. When integrated with schedule data, they offer real-time insights that benefit both passengers and transit operators.

What I learned:

- Designing for real-time decision-making requires balancing simplicity and detail to avoid overwhelming users.
- User feedback is essential—what seems intuitive in design may be interpreted differently in practice.
- Context matters as visualizations must account for on-the-go use, ensuring users can quickly comprehend information in high-pressure environments.

Next Steps

Use real-time crowd visualizations for better transit resource planning and traffic management. Expand use cases by applying visualizations to manage crowds at events and in public spaces.

2

Work closely with transit operators and event organizers to tailor solutions for emergency response and operational needs.

3